Connecticut Department of Transportation ### Route 9 Tunnel Feasibility Study Report State Project No. 82-279 Prepared by: ### TABLE OF CONTENTS | SEC | TION | <u>PAGE</u> | |--------------|---|-------------| | I. | EXECUTIVE SUMMARY | 2 | | II. | INTRODUCTION | 3 | | III. | BASIS FOR DESIGN | 4 | | | A. Key Issues | 4 | | | B. Design Criteria | | | | C. Existing Conditions | | | IV. | DESIGN FEATURES | 16 | | v. | SYSTEM WIDE ELEMENTS | 17 | | | A. Mechanical – Heating, Ventilation, and Air-conditioning | 17 | | | B. Electrical | | | | C. Roadway Drainage System | | | | D. Fire Protection System | 27 | | VI. | CONSTRUCTABILITY | 29 | | | A. Maintenance and Protection of Traffic (M&PT) | 29 | | | B. Construction Staging | 31 | | VII. | CONSTRUCTION AND MAINTENANCE COST ESTIMATES | 32 | | VIII. | FINAL CONCLUSIONS AND RECOMMENDATIONS | 36 | | <u>APPI</u> | ENDICES | | | APPE
APPE | NDIX A – Photographs
NDIX B – Schematic Drawings
NDIX C – Magazine Article
NDIX D – Boring Logs & Data | | ### I. EXECUTIVE SUMMARY The intent of this report is to analyze the feasibility of designing and constructing a six-lane depressed highway tunnel for Connecticut State Route 9 in Middletown, Connecticut. The focus of this report is intended to describe the general design criteria, outline the existing geotechnical conditions, and present possible constructability obstacles and potential solutions associated with the construction of the tunnel using the cut and cover method. In addition, also presented is a preliminary construction cost estimate. It is expected that the cost for this tunnel, projected to a construction start in year 2010, would be approximately \$557 million including, engineering, construction administration, and contingencies. Annual operation and maintenance costs, beginning in 2013, would be in the range of \$1.9 million per annum, which includes \$700,000 in annual energy costs to power the tunnel and its facilities. If this project is progressed into design, it is recommended that the initial phase include an extensive geotechnical data collection program. The collection of this additional data will allow designers to make better informed decisions regarding the constructability issues and allow for more precise estimation of construction and maintenance costs. ### II. INTRODUCTION The City of Middletown, population 45,000, is located along the Connecticut River, recently designated an American Heritage River. Prior to the construction of Route 9 there was unobstructed access and vistas of the Connecticut River from downtown Middletown. That connection was cut off when Route 9 was built in it present location. In an effort to reclaim the lost access to the waterfront, the citizens of Middletown have urged the Connecticut Department of Transportation (ConnDOT) to investigate a solution that reconnects the downtown commercial area with the waterfront. (See Study Area in Figure 1) The Connecticut Department of Transportation has been studying Route 9 with the intent of providing a safer and more efficient Route 9. Various alternatives that address the deficiencies along Route 9 have been presented to ConnDOT and town officials in an effort to find a solution that meets the needs of both groups. Based on input received from the City, improving waterfront access is one of the primary concerns of the Middletown officials. In response, ConnDOT is investigating means to provide improved access to the riverfront, a more pedestrian friendly environment, and additional area for development. One of the options being explored is to depress Route 9 in a tunnel to provide the direct pedestrian access to the riverfront desired by the City. It is envisioned that the area above the tunnel would be an expansion to the waterfront park. The tunneling of Route 9 would allow pedestrians to walk between the waterfront and the downtown. It should be noted that the existing rail line running between Route 9 and deKoven Drive is an active line leased and used by Providence and Worchester Railroad (P&W). Pedestrian access across this rail line will be controlled and only specific crossing points will be designated. This study will outline the design features associated with a roadway tunnel. The report will also present a discussion of the existing geotechincal conditions of the project area, based on limited subsurface data. The discussion of the subsurface conditions will lead to a recommendation of a construction method that allows for construction of the tunnel in two primary stages. Finally, a preliminary construction cost estimate is included. The cost estimate is provided using future dollar values projected to an assumed construction start in year 2010. Route 9 mainline runs beneath the superstructure of the railroad bridge. Three southbound lanes of Route 9 pass between the western most abutment and a pier located in the median of Route 9. The existing three northbound lanes are west of the median pier on an embankment adjacent to the Connecticut River. Additionally, the railroad tracks also run between deKoven Drive and Route 9 and eventually pass under the highway via the Union Street Overpass. These tracks create a boundary between Route 9 and deKoven Drive. ### 4. Natural Resources The tunnel and each project alternative would need to be analyzed for its potential impact to the estuary and its shoreland. In particular, potential impacts to regulated wetlands, water quality, significant coastal fish and wildlife habitats, and rare and endangered plant and animal species would need to be assessed. Habitat degradation and destruction is among the most serious threat to endangered and threatened species. In general, permission to fill or disturb a wetland can be granted if there is no feasible alternative to avoid such action and if appropriate mitigation, such as replacement wetlands in another location, can be agreed upon. Coordinated management of underwater lands is an essential element in assuring the long-term health and viability of plant and animal communities of the estuary. ### 5. Cultural Resources Parkland, historic properties and archaeological resources are protected from potential adverse effects by Section 4(f) of the Department of Transportation Act of 1966. The Secretary of Transportation may approve a transportation project requiring the "use" of publicly owned land of a public park, recreation area, wildlife and waterfowl refuge, or historic or archaeological site only if there is no prudent and feasible alternative to using that land, and if all possible measures to minimize harm are included. A significant adverse impact constitutes a "use". This includes direct physical impacts, such as demolition or removal of part of a property. It also includes adverse contextual impacts or the "constructive use" of a property, which occurs when changes caused by the project creates a substantial impairment to the important qualities of the resource. Constructive use could occur from such changes as noise, visual intrusion, or other such elements that would significantly alter the setting of the resource. Historic and archaeological resources are also protected by Section 106 of the National Historic Preservation Act of 1966, which require that Federal and State agencies consider the effect of their actions on properties listed on or determined to be eligible for listing on the National and State Register of Historic Places. ### 6. Environmental Permits and Approvals The Connecticut River is New England's largest river ecosystem and one of the Nation's 14 American Heritage Rivers. The entire Connecticut River Watershed was designated a National Fish Wildlife Refuge by Congress in 1991. In addition, the portion of the River that extends from just north of Middletown south to the Long Island Sound is a designated estuary and tidal river complex that has received international recognition as "wetlands of international importance especially as waterfowl habitat" and is considered the most pristine in the Northeast. If ConnDOT decides to proceed with project development, one of the first tasks would be to complete the environmental review process in accordance with the National Environmental Policy Act of 1969. NEPA requires that agencies contemplating an action (such as spending federal funds or issuing a federal permit) take a "hard look" at the environmental consequences of their actions. An environmental impact statement (EIS) would need to be prepared considering all reasonable and feasible alternatives to the proposed action. Field surveys, monitoring and modeling efforts would need to be completed to fully identify the potential environmental effects of each project alternative in accordance with Federal and State regulations. The permits and approvals required for project implementation would entail coordination with numerous Federal and State resource and regulatory agencies. Consequently, it would be important to develop and address all reasonable and feasible alternatives in consultation with the regulatory agencies and the public early on, to obtain guidance on what is acceptable. During the environmental review process, consultation with the U.S. Fish and Wildlife Service, National Marine Fisheries Service, Connecticut Department of Environmental Protection, among others, would occur. Other analyses required under NEPA such as Environmental Justice and noise impact assessments would also be completed. Specific permits and approvals required to construct the project are typically identified during the EIS process based on specific construction methods that would be used and the preliminary engineering of the preferred alternative. Outlined below is a summary of some of the environmental permits that would likely be required for the Route 9 Tunnel project. ### Federal
Permits/Compliance Requirements: - National Environmental Policy Act (NEPA) - Clean Air Act Conformity Determination - Air Quality Analysis Report - Endangered Species Consideration - Hazardous Materials Regulation - US Army Corp of Engineers - a) Section 404 Wetlands Permit - b) Section 10 Rivers Permit ### **State Permits/Compliance Requirements:** - CT Department of Environmental Protection (DEP) Inland Water Resource Division - a) Inland Wetlands & Watercourses Permit - b) 401 Water Quality Certification - c) Flood Management Certification - d) Stream Channel Encroachment - CT DEP Office of Long Island Sound Programs - a) Structures, Dredging and Fill Permit - b) Tidal Wetlands Permit - National Pollution Discharge Elimination System (NPDES) Permit/State General Stormwater Discharge Permit - CT DEP Indirect Source Air Permit ### B. Design Criteria Of particular importance to a project of this magnitude is an understanding amongst all parties involved of the criteria by which the planning and design phases will be controlled. Federal, state and local regulations must be followed and integrated early into the planning process in order to insure successful completion of the program. The following "Design Criteria" is suggested as a starting point for concept preparation. Each area should be examined carefully for its impact on the local environment, community and the safety of the users: ### 1. Tunnel Orientation, Length, and Limits The design including the associated sketches, figures and drawings, will utilize conventional highway referencing, where the stationing increases from the south to the north. In referencing right or left of centerline, the orientation will be looking in the direction of increasing station. - Tunnel Limit: Approximately 1,200 m [3,950 ft] (South Boat Section to North Boat Section) - Tunnel Length: Approximately 470 m [1,540 ft] (South Portal to North Portal) Note: URS designed the Atlantic City / Brigantine Connector in 1999. For comparison, the tunnel limit of the Atlantic City tunnel is 884m [2,898.75 ft] and tunnel length from portal to portal is 596 m [1,957 ft]. ### 2. Highway Design Criteria ### 2.1 General Route 9 is classified as a Multilane Urban Principal Arterial-Expressway. The tunnel and its approach structures will conform to the criteria outlined below ### 2.2 Applicable Standards During design the depressed roadway will comply with the latest applicable codes, regulations and standards. The following publications were used in the development of the conceptual design used for determining the overall feasibility of this tunnel. · Connecticut DOT Highway Design Manual, 1999. - A Policy on Geometric Design of Highways and Street (2001); Fourth Edition AASHTO - "Standard Specifications for Highway Bridges", 17th Edition-2002, American Association of State Highway and Transportation Officials (AASHTO); Seismic effects will be considered. ### 2.3 Base Mapping The Connecticut Department of Transportation has provided the topographic and planimetric mapping that has been used in the development of this report. The following horizontal and vertical datum were used. - The Horizontal control is based on NAD 27. - The Vertical Datum is based on NGVD 29. - Middletown Datum is 15.503 feet above the NGVD 29. ### 2.4 Excavation and Grading For the purpose of this study it is assumed that the tunnel will be constructed by cut and cover methods. The materials adjacent to the excavation could be supported by sheeting or sheet piling. There is possibly a need for the excavation to be performed in segments both parallel and transversely to the direction of traffic. Due to the width of cut required the structure may be constructed in sections (say one half width at a time). Upon completion of the structure the area above the tunnel will be graded and sodded in accordance with local requirement to allow unimpeded access to the river. Portions of the depressed section at both the northern and southern end will be left open as tapered transition sections to existing Route 9. ### 2.5 Roadway Design Guidelines ### 2.5.1 Traffic Design years: 20 * Average Daily Traffic (ADT) (Year 2000): 65,000 vehicles /day * Design Speed: 45mph (through tunnel) ### 2.5.2 Horizontal and Vertical Alignment | * | Stopping Sight Distance | 160 m-205 m | |---|-------------------------|-------------| | * | Minimum Radius of Curve | 440 m | | * | Maximum Grade | 4.0% | | * | Minimum Grade | 0.5% | | * | Superelevation (max) | 6.0 % | ### 2.5.3 Typical Section (Two Cell Tunnel Roadway) * Number of Lanes (ultimate) Six lanes with three lanes in each direction (3 per cell) * Lane width 3.6m * Right shoulder 1.2m-2.4m * Left shoulder 1.2m-2.4m * Vertical Clearance 16'-3"=16.25' (4.92 m) Note: Inside overall vertical dimension is 16'-3'' + 4'-0'' = 20'-3''. ### 2.6 Approach Drainage Drainage will be developed for both the north and south approaches of the tunnel. A pump station will be necessary at the low point of the tunnel structure. Storm drains will be placed in the depressed sections and in the tunnel structure. Design of the drainage system will be in accordance with the Connecticut Department of Transportation Drainage Manual. ### 3. Geotechnical ### 3.1 General A generalized geological profile was generated from available sources. These sources include a cross section from record construction plans of the Arrigoni Bridge, boring logs from the recently constructed State Courthouse located west of Route 9, and a set of three boring logs taken for the Route 9 overpass over Union St. ### 3.2 Groundwater Control Inside the Tunnel It is anticipated that the exterior of the structure will be adequately waterproofed to prevent the infiltration of groundwater. Both longitudinal and transverse joints throughout the tunnel should be detailed to resist leakage. The entire structure will be proportioned to resist uplift pressures exerted by groundwater. No underdrains will be used for the structure. ### 4. Structural ### 4.1 General The following sections establish the basic criteria for the design of the tunnel and its structural components. ### 4.2 Cross Passages Cross passages per National Fire Protection Association (NFPA) requirements will be provided between the northbound and southbound tunnel cells. They will be spaced at intervals of not more than 300 feet to provide access to authorized personnel and emergency egress to evacuate the public to the adjacent cell. ### 4.3 Design Loads The cut and cover structure is to be constructed of reinforced concrete. The size of its various elements (roof, walls, base slab, etc.) will be proportioned by either using Service Load Design method or alternatively the Load Factor Design method as defined in The American Association of State Highway and Transportation Officials (AASHTO) specifications. Some of the loads to be considered are as follows. - i) Live Load - MS 22.5 (metric equivalent of HS25) - ii) Earth Pressure - Use 19 kN/m3 (=120pcf) for the unit weight for earth pressure - iii) Buoyancy Adequate resistance to flotation will be provided at all sections of the tunnel for full hydrostatic uplift pressure on the structure foundation based on the probable maximum height of the groundwater. The factor of safety against uplift under the above conditions, neglecting side wall soil friction effects, will not be less than 1.10. ### iv) Flooding Local flooding will add load to the structure. Design of the structure should make allowance for this loading. Flood level shall be based on 100-year flood (EL +7.0m). v) Portals Portals shall provide protection against flooding resulting from high water levels of the Connecticut River. The design top elevation of the portals shall be based on 500-year flood (EL +8.0m). ### 5. Tunnel Ventilation The tunnels will be provided with a longitudinal ventilation system using jet fans. A discussion of alternate ventilation systems is included in section IV (System Wide Elemnts). ### 6. Tunnel Lighting - Lighting calculation using "Lumen Micro" software to design tunnel lighting in accordance with requirements of American National Standard Institute (ANSI) / Illuminating Engineering Society of North America (IESNA) recommended practice for tunnel lighting RP-22-96 - Preparation of lighting plans (threshold zone, transition zone, and interior zone) will be based on calculation results. ### Note: - a) Threshold Zone The area inside the tunnel where a transition is made from the high natural lighting level outside the tunnel to the beginning of the transition zones. - b) Transition Zone(s) Areas which allow motorists to achieve appropriate eye adaptation by incrementally reducing the level of luminance required in the threshold zone to the luminance level of the interior zone. - c) Interior Zone Area within the tunnel after eye adaptation has been completed. Note: Early emergency operational cost project to year 2013 will be approximately \$717,590 ### 7. Supervisory Control and Data Acquisition (SCADA) The SCADA and data communications sub-system provides for the monitoring and control of electrical and mechanical systems equipment (linear heat detection system, tunnel fire alarm system, carbon monoxide (CO) monitors, ventilation fans, pumps, switchgear) and Traffic Surveillance and Control System (TSCS) equipment. There will be a communication area located in the electrical control room area, where all data will be collected. Ventilation fans normally will be operated from CO signal detectors. ### C. Existing Conditions ### 1. Land Use The Connecticut River waterfront area in and around the study area contains available land with the potential for further development and improved access to the downtown area. The land presently has on it a restaurant, boat house and Harbor Park (Photo No. 5 and 6). Access to the park is by the Harbor Park Pedestrian Tunnel (Photo No. 7) located beneath Route 9 at approximately station 1+750 or via Union Street
(Photo No. 4). Additional access is by River Road located south and east of the project limits. ### 2. Arrigoni Bridge The Arrigoni Bridge carries Connecticut State Routes 66 and 17 east and west between Portland and Middletown, over Route 9 and the Connecticut River. The bridge is located just north of the project limit. Design plans from 1935 provided clues to the soil stratification and foundation design approach for that time period. ### 3. Union Street Overpass The Union Street Overpass carries Route 9 over both Union Street and the Providence and Worchester rail lines. Union Street is one of two vehicular access roadways to the Connecticut River waterfront. Boring logs for this structure, dated 1984, were available from ConnDOT. ### 4. Utilities Generally, the utilities throughout the study area are not obstructive. There is the normal water supply, power supply, and communications to the waterfront area, which require relocation. It should be noted that a large reinforced concrete storm sewer exists adjacent to deKoven Drive. Storm water collected by this system appears to outlet into the river through extensions beneath the railroad and Route 9. Consideration should be given to redesigning the entire storm water system in the area of the tunnel construction to avoid conflicts. ### 5. Geotechnical A detailed geotechnical investigation program was not included as part of this feasibility study, but should be a priority for any future studies for depressing Route 9. Such a study would seek to obtain the existing soil condition data necessary to adequately assess the strength characteristics of the soil as well as other information necessary to provide comprehensive design. For this study, geotechnical data was extracted from construction records of other projects. The information available consisted primarily of boring logs, test pit logs, and a general soil profile across the Connecticut River from the Arrigoni Bridge plans. This information was compiled and results in the Geologic Profile shown on Drawing Sheet 2 of 14. The soils overlying bedrock in the project area appear to have been deposited in three distinct strata ranging from cohesionless glacial deposits in the upper layers (A), to clays with interbedded sand lenses (B), to layer (C) glacial tills, composed of dense sands, silts, cobbles, clays and some boulders. Each of these layers tend to increase in thickness from south to north along the alignment of Route 9. The generalized Geological Profile was overlaid on alternative alignments in order to assess the pros and cons of constructability in those particular environments. Subsequent investigations would delineate the locations and interfaces of these layers more definitively. It appears that foundation support for the railroad bridge and the Arrigoni Bridge was achieved by going through the clay areas (B) to the till (C) and rock. It should be noted that the location of the water table over the alignment varies from elevation 0.00 m to + 6.0 m over the alignment. The water table location will have a significant impact on the constructability of the tunnel. Special measures may have to be taken to insure, the stability of the soils encountered resulting in an increase in cost. ### IV. DESIGN FEATURES Applying the criteria outlined in this study results in a two cell reinforced concrete structure over one hundred feet wide. The structure will provide three 3.6 meter lanes in each direction with shoulders and a center wall with passageway doors located along its length. The box structure will separate into two individual boat sections at the north tunnel limit prior to passing beneath the Providence and Worcester railroad bridge. In subsequent studies, the roof of the structure should be evaluated for alternative pre-cast construction or a combination of pre-cast and cast-in-place concrete construction. ### V. SYSTEM WIDE ELEMENTS ### A. Mechanical – Heating, Ventilation, and Air-conditioning ### 1. Applicable Codes and Standards The Work of this Section shall conform to the latest applicable codes, standards, and references as follows: - AFMBA Anti-Friction Bearing Manufacturers' Association - AISI American Iron and Steel Institute - AMCA Air Movement and Control Association - AWS American Welding Society - ASHRAE American Society of Heating, Refrigeration and Air-conditioning Engineers - ANSI American National Standards Institute - ASME American Society of Mechanical Engineers - ASTM American Society for Testing and Materials - NEMA National Electrical Manufacturers' Association - NFPA National Fire Protection Association ### 2. Tunnel Ventilation System Requirements The tunnel ventilation system shall provide proven and reliable means of smoke control in the event of a fire inside the tunnel such that a safe evacuation of stranded motorists can be carried out and the fire department and other emergency personnel can gain access to the fire site. The longitudinal tunnel ventilation system shall be capable of moving air in the tunnel at sufficient volume and pressure to meet the critical air velocity requirements as defined in National Fire Protection Association (NFPA) 502. The maximum air velocity in the tunnel shall not exceed 220 ft/min the minimum air velocity within a tunnel should be sufficient to prevent backlayering of smoke. The required ventilation capacity for the longitudinal ventilation system shall be based on assumption that a group of vehicles, traveling downgrade has stopped and the first vehicle is on fire. Tunnel ventilation fans that are to be used during fire emergencies, their motors, dampers, actuators and accessories that are exposed to the exhaust air stream from the roadway fire shall be designed to remain operational for a minimum of one hour in an airstream temperature of 482 Deg. F. The emergency ventilation capacity required to maintain the critical velocity past the vehicles and thus preventing smoke traveling toward the trapped vehicles is the capacity recommend for the system. See page three and page four details. ### 3. Tunnel Ventilation - Longitudinal Ventilation with One Vent Shaft a) The vehicle-induced piston-action ventilation during a free-flowing traffic is anticipated to be sufficient to provide adequate ventilation through the tunnel. To facilitate this effect, an emergency ventilation shaft, located in the middle of the tunnel could be constructed to operate like passive air exchange shaft during non-emergency operation and low CO value in the tunnel. The Carbon monoxide monitoring system shall start a fan in the cell affected with a critical value of carbon monoxide. The vent shaft structure could be combined with the pump station, and/or electrical station. ### b) Emergency Condition Longitudinal Ventilation For this option the emergency fan shaft is to be located in the middle of the tunnel. The total emergency ventilation capacity at vent shaft is 1,000,000 cfm, with four fans. Each fan should provide at least 250,000 cfm in exhaust mode and 225,000 cfm minimum in supply mode. Any one of these four fans can provide ventilation for any of the tunnel's tube. ### c) Commonality Fans, sound attenuators, dampers, motor starters and other like components of each category of the tunnel ventilation system equipment, shall be of a single manufacturer and supplied by a single supplier. All like parts shall be interchangeable where practical. ### d) Fan Performance Fans shall be capable of delivering air in both the forward and reverse directions of airflow. The fans shall be capable of reversing the direction of airflow by reversing the motor rotation. Fans for longitudinal ventilation system shall be multi-speed. Fans shall be capable of reversing airflow in sixty seconds or less, from full speed forward to full speed reverse or vice versa with a maximum deenergized period of 30 seconds between reversals. Fans shall be capable of reversing airflow at least three times during any one hour. ### e) Sound Attenuators Requirements Sound attenuators shall be of such design that when all fan assemblies are operating together, the ventilation system noise does not exceed the maximum acceptable sound power levels of 85 dBA at five feet above the road surface. ### f) Motor Control Centers Three-phase starters (controllers) shall be provided for all motors rated 1/2 horsepower and above unless a specific item of motor-driven equipment is normally supplied with single phase motor rated 1/2 horsepower. Starters shall be grouped in floor mounted NEMA 12 assemblies of one or more metal enclosed vertical sections having a horizontal common power bus and principally containing combination motor control units (starters), identified by the industry and NEMA Standards as "Motor Control Centers." Motor control centers, which are required to contain electrical interlocking between starter units, shall be specified as Class IIC type. When a fan is installed 'out of sight' from its motor starter, a local disconnect switch of appropriate rating shall be provided. ### g) Emergency Operating Conditions During an emergency operating mode, the fans will be operated to move air in the normal direction of traffic flow forcing smoke and hot gases from the fire towards the empty portion of the tunnel and maintain a clean air supply upstream of the fire. This mode of ventilation system operation will generate airflow pattern to protect emergency personnel and vehicles stopped behind the accident, by maintaining clean air supply in the upstream of the roadway to serve as an evacuation path for patrons and access for firefighters and other emergency personnel. The ventilation system operation in emergency mode shall be activated manually by the operator at the Operations Control Center after receiving an alarm from the fire alarm pull station, the traffic surveillance, and from the control system. ### 4. Tunnel Ventilation – Longitudinal Ventilation with Jet Fans a) Vehicle fire size:
50 megawatt (MW) Number of jet fans: 36 (three jet fans transversely per tube in 6 areas longitudinally throughout the tunnel). Jet fans size: 630mm diameter and 2 diameter sound attenuators at both ends to reduce fan noise to acceptable level. Jet fans capacity: Static thrust of 473 Newton with discharge air velocity of 36.9 meters per second. b) CO monitoring system: consist of MultiGard control panel with signal averaging hardware located in an electrical station and 8 sampling points for each tunnel (tube). When average carbon monoxide levels in the tunnel reach a critical value of 120ppm the monitoring system will activate the tunnel ventilation system. Jet fan operation - normal and emergency: - Normal operating conditions. When CO level in any tunnel cell approaches the high set point of the acceptable limit, the fans shall be activated automatically to induce airflow through the respective tunnel cell. The direction of airflow shall mimic the traffic direction. As CO levels increase, additional fans shall be energized. During congested or stopped traffic, when CO levels approach the maximum allowable limit of 120ppm for a 15min exposure in spite of all fans operating, the ventilation control system shall generate alarms to warn the operating personnel so that steps can be taken to restrict the traffic through the tunnel. - d) Emergency operating conditions. During an emergency operating mode, the fans will be operated to move air in the normal direction of traffic flow forcing smoke and hot gasses from the fire towards the empty portion of the tunnel and maintain a clean air supply upstream of the fire. This mode of ventilation system operation will generate an airflow pattern to protect emergency personnel and vehicles stopped behind the accident, by maintaining a clean air supply upstream of the roadway to serve as an evacuation path for patrons and access for firefighters and other emergency personnel. The ventilation system operation in emergency mode shall be activated manually by the operator at the operation control center after receiving an alarm from either a pull station or the traffic surveillance and control system. After verifying that the vehicles downwind of the fire have cleared out of the tunnel, fans shall be activated to produce a high velocity air stream to push the tunnel air toward the exit portal. The most appropriate operating mode for ventilation system shall be selected using a pre-programmed sequence to activate fans and associated equipment. The ventilation system for the non-incident tunnel cell shall also operate to maintain a supply of fresh air. ### 5. Air Distribution System Design for Pump Room and Electrical Room All air-distribution duct systems shall be designed based on recommendations and in accordance with information contained in the latest edition of the Handbook of Fundamentals (ASHRAE). Supply duct sizes shall be selected for an equal pressure drop or static regain method as appropriate. In general, the ductwork fabrication shall be in accordance with Low Pressure or Medium Pressure Duct Construction Standards (Sheet Metal and air-conditioning Contractors National Association, Inc. (SMACNA)) as appropriate. ### Supply Air Registers and Diffusers All supply air registers and diffusers shall be selected to provide the required throw and spread with the least amount of draft and noise. All registers shall be provided with opposed-blade adjustable volume dampers. The volume dampers shall be key operable through the face of the diffusers and registers. ### Exhaust / Return Air Grilles and Registers Either all exhaust/return air grilles and registers shall be equipped with fixed, non-see-through blades or louvers, or the duct behind them shall be painted matte black. Registers shall be equipped with key operable opposed blade volume dampers that are adjustable through the face the grille. ### Fire Dampers Fire dampers shall be provided where air ducts pass through fire rated walls and partitions. Fire dampers shall be UL listed. ### Access Doors Access doors shall be provided in ducts and plenums to service fans, dampers, fire dampers, turning vanes, coils, filters, etc. Access doors in insulated ducts and plenums shall be insulated using sheet metal insulation. ### Flexible Duct Connectors Flexible duct connectors shall be used on all fan units to connect units to ductwork. The length of each joint shall be selected to adequately accommodate both horizontal and vertical deflections of the fan units. ### Insulation Insulation shall be provided for the following: - Heating and A/C supply and return ducts [UPS (Uninterruptible Power Supply) Room] - Outside Air Intake Ducts subject to condensation (Sweating) ### 6. Electrical and Mechanical Equipment Rooms ### System Concept A supply and exhaust ventilation system shall be provided to remove and discharge to the outdoors heat produced by transformers, switchgear, the uninterruptible power supply unit, lights, etc. Ventilation air shall be obtained from the outdoors. Air filtration shall be provided at the air intake to the space and a positive pressure shall be maintained when the system is in operation. Where required, heating shall be provided with the use of electric unit heaters. The ventilation systems shall be automatically shut down in the event of fire or smoke detection within the room. ### 7. Pump Room Exhaust ventilation shall be provided in pump rooms. The ventilation system shall continuously operate to maintain the space under negative pressure. One fan shall be on stand by. Fans shall be connected to stand by power supply, and hydrocarbon/smoke control panel. Low point pump stations shall be ventilated with a minimum of six air changes per hour. The heating system shall be provided by electrical heaters. ### B. Electrical All work of this section shall conform to the latest applicable codes, standards, and references as follows: NFPA-70: National Electric Code UL: Underwriters Laboratory NEMA: National Electrical Manufacturers' Association ### 1. Tunnel lighting system will consist of three major components: - a. Normal lighting in tunnel interior zone and portals. It would be designed for urban tunnel with the speed of 45 mph. Lighting level would be 9 cd/m² for daytime and 2.5 cd/m² for nighttime operation. - b. Tunnel entrance zone lighting will be designed for threshold zone and two transition zones- 230 cd/m², 80 cd/m², and 25 cd/m² respectively. c. Emergency lighting will be provided to permit egress from tunnel during the loss of power it will provide illumination of at least 10 lux average measured at floor level (NFPA101) ### 2. Electrical service and power distribution will consist of: - a. Dual incoming utility power from two independent sources. It will utilize two service feeders, ductbank, dual-ended unit substation with primary and secondary switchgear, protection and metering scheme. - b. Standby 2000kw generator with fuel supply for 12 hours of operation of emergency lighting, ventilation and communication, alarm and control loads. - c. 225 kva UPS system with minimum 15 minutes duration will be provided to prevent lost of data during transition from utility to generator operation and will serve communication, Closed Circuit Television (CCTV), SCADA, Fire Detection and Alarm System. - d. Electrical substation room, motor control center room, battery and UPS and generator rooms are required to house all necessary equipment and shall be located in the tunnel. - e. Electrical power distribution system shall be designed to provide power in coordination with the two alternatives of the ventilation system design: one alternative having one ventilation shaft with four 200 hp (250,000CFM/ea) ventilation fans, reversible with Variable Frequency Panel (VFD) controllers and another alternative with thirty six (six rows of six)50 hp jet fans suspended from ceiling in each cell, reversible with VFD controllers. - f. Electrical service building lighting, small convenience and motor loads smaller than ½ hp will be served at 120/208V; motor loads above ½ hp and tunnel lighting will be served at 480V. ### 3. Communication system will consist of : a. Motorist aid phones located in north and south bound tunnels no more than 150 ft apart with blue indicating light above. The phone activation shall send a signal to communication room and to remote control station. - b. Fire alarm pull stations located in north and south bound tunnels no more than 150 ft apart with red indicating light above. Activation of fire alarm pull station shall send a signal to communication room and to remote control station. - c. Linear heat/fire detection wire running exposed in north and south bound tunnels. Activation of fire detection shall send a signal to communication room Fire Alarm Control Panel (FACP) and to remote control station. - d. Radio system will accommodate Police and Fire department operations. Transmitters/receivers, Radio Frequency (RF) combiners and power splitters will be installed in communication room. Radio transmission will be facilitated through the coaxial cable (radiax) on both sides of north and south bound tunnels. - e. Communication room is required to house all necessary equipment and shall be located in the tunnel. - f. Communication room shall have emergency phone line ### 4. Control equipment will include: - a. Closed Circuit Television (CCTV) - b. Carbon monoxide system - c. Ventilation control system - d. SCADA system: Supervisory Control and Data Acquisition System (SCADA) programmable logic controller base (PLC based) will be provided to pick all the points for local and remote alarms, control and annunciation of electrical, ventilation, pumping and communication systems at tunnel and tunnel service building. Interface module for conversion of all data signals to fiber optic signals shall be provided. All signals from interface module will be sent via fiber optic cable to remote control
location. ### C. Roadway Drainage System The basic components of the tunnel drainage system will consist of drain inlets with grates, longitudinal gravity drain lines, underground pump station at the tunnel low point with three (3) submersible pumps, and a 20-inch discharge line from the pump station to a water quality basin at the south portal, prior to discharge to the Connecticut River. The portal storm water runoff criteria used for the design of the drainage system will be based on a storm frequency of 50 years with a duration of five minutes, plus 500gpm for fire fighting. Both the Lindberg Boulevard Runway Bridge/Tunnel in St. Louis and the Atlantic City-Brigantine Connector adopted this criteria. Roadway inlets will be spaced no more than 100 feet apart in the tunnel and boat sections, and will be located entirely off the travelway. Inlet gratings are designed for HS-25 truck loading and will be securely fastened to the frames. The underground pump station will have three distinct levels: screen, treatment and sump pit level; pump access room level; heating and ventilation, and the control room level. The top of the underground pump station will be flush with grade with access covers. The screen, treatment and wet well level will consists of the following: stainless steel bar screens with 2" by 2" openings at the entrance to the pump station to contain debris and floatables which may be carried into the inlet chamber; two storm water treatment units, manufactured by Stormceptor, after the screens to remove hydrocarbon pollutants and sediment from the incoming storm flow; and three (3) submersible pumps in the sump pit area with a redundant water level pump control system. Each submersible pump will be capable of handling 50% of the design storm flow, which is approximately 7000 gpm. In an extreme flood condition, it would be possible to bring the three(3) pumps on-line. The pump access room floor area will be used by maintenance personnel to service, clean, and remove debris and floatables from the trash rack screen pit, to remove captured oil and sediment from the oil/water separators, to remove, service and replace the three (3) submersible pumps and the two (2) water level control assemblies in the sump pit. This area will also have the three (3) main pump control panels, one (1) instrumentation control panel, and an overhead monorail with hoist. The HVAC floor area will have heating and ventilating equipment required to heat and ventilate the pump station, as well as maintain a negative pressure, at all times, in the pump access room area and in the lower screen, treatment and sump level area. The ventilation system design will include two units, with one unit in continuous operation and the other on full standby. Equipment will be selected with two speed operating mode, low and high speed. Normally, one unit will operate at low speed, with a minimum of six (6) air changes per hour, 24 hours a day. A hydrocarbon detection system will be provided in the lower level of the pump station and in the pump access room to detect any hydrocarbon in the area. If this system should be activated on detection of hydrocarbon in the area, it will signal an alarm condition at the Remote Control Center, will activate a horn/strobe light at grade outside the pump station, and will start the ventilation equipment in the high speed mode to increase the exhaust air flow to remove all traces of hydrocarbon. A smoke detection system will also be provided in all rooms and areas in the pump station, and in the heating and ventilating duct system. If this system is activated, it will signal an alarm condition at the Remote Control Center, and will activate the horn/strobe light at grade outside the pump station. ### D. Fire Protection System The fire standpipe system will consists of two (2) 4-inch standpipe mains, one in each tunnel, with fire hose valve cabinet stations recessed into the center wall of the roadway tunnel and the exterior walls of the boat sections. The standpipe system will remain dry (without water) during normal operations. When required, the dry fire standpipe system will be charged by the City Fire Department using fire department pumpers hooked up to street fire hydrants and to system inlet connections at grade. The fire standpipe system will be capable of providing two hose streams, each with a capacity of 250gpm at 100psi at the most remote hose outlet, and a total flow of 500gpm at 65psi residual pressure in accordance with the requirements of NFPA 502. Combined vacuum and air relief valves will be installed on the fire standpipe mains to insure that the delivery time of water to any hose connection on the system will be less than 10 minutes as stipulated in NFPA 502. This equipment will also facilitate draining the system, in winter, after a fire incident use. Stainless steel fire hose valve cabinets with two (2) 2-1/2 inch angle hose valve outlets and a stainless steel fire extinguisher will be provided every 150 feet maximum in the tunnel and boat sections. Fire extinguishers will be of the multipurpose (ABC) type in NFPA 10, twenty pound capacity. ### Route 9 Tunnel Study, Middletown, CT-Feasibility Study Report State Project No. 82-279 All fire standpipe system cabinets will be provided with a waterproof tamper switch that will indicate an alarm condition at the Remote Control Center to alert the operator when the cabinet door is opened during a fire incident or due to an act of vandalism. ### VI. CONSTRUCTABILITY The following section will discuss some of the requirements and challenges that must be addressed during construction. The Maintenance and Protection of Traffic (M&PT) will discuss the changes that could be made to traffic patterns to maintain at least two travel lanes in each direction along Route 9. The discussion of construction staging will look at some of the construction techniques and activities that will take place during the various stages of construction. ### A. Maintenance and Protection of Traffic (M&PT) It should be noted that construction of the tunnel could not progress until the Route 66 / Route 9 interchange improvements, currently under study, were implemented to remove the signalized intersections along Route 9. As currently proposed, the tunnel boat section extends beyond the existing Hartford Avenue intersection, thus prohibiting any access to Middletown from Route 9 in this area. The traffic staging sequence will closely follow the construction staging plan and will consist of three primary stages (See Drawing Sheets 7 thru 10). During construction, two lanes will be maintained in each direction along Route 9 throughout the project limits, and the posted construction zone speeds will be 35 mph. A temporary construction easement would be established limiting staging impacts on the river. Stage 1: Early construction will be required to widen the northbound lanes eastward towards the river bank. Once this is completed, all Southbound Route 9 traffic will cross over the median to the northbound lanes immediately after passing under the Arrigoni Bridge. Two lanes will be provided in each direction separated by concrete barrier. Traffic will travel along the northbound side of the existing highway for the length of the tunnel section. Once southbound traffic has been shifted, the southbound cell of the cut and cover tunnel can be excavated and built to completion. In addition, most of the deep boat section, as well as the southbound split boat section under the existing railroad bridge can also be constructed during Stage 1. Beyond the limits of the newly constructed tunnel section, southbound traffic will again cross over the median and return to the existing alignment before the approach to the Union Street Overpass. Southbound access points at Hartford Avenue and deKoven Drive will be maintained. Washington Street access will be closed permanently. Stage 2: Once the southbound tunnel and deep boat sections are completed, southbound traffic will be placed within the newly constructed tunnel, northbound traffic will remain with two lanes at-grade along the outside of the widened existing northbound roadway. At this time, the median boat section and inside boat section running northbound under the Railroad Bridge will be excavated and built. Stage 3: During the final stage of major construction, the two northbound lanes will cross over to the southbound side of the highway through the median immediately after crossing the Union Street Overpass. Two travel lanes will be provided in each direction through the completed southbound tunnel cell. The travel lanes will be separated by a concrete median barrier. Once all traffic has been shifted into the tunnel, the northbound tunnel and deep boat section can be excavated and built. As northbound traffic exits the tunnel, the two lanes will be split as one lane will cross the median back to the northbound side of the highway. The lane crossing the median will cross over the median constructed in Stage 2 and travel in the constructed boat section under the Railroad Bridge. The other northbound lane will continue within the southbound boat section under the Railroad Bridge. Beyond the Railroad Bridge, the left northbound lane will then cross over the median and return to the existing northbound alignment before passing under the Arrigoni Bridge. Final shallow boat section construction will be done on both ends of the project using single lane closures and typical M&PT standards and details. ### B. Construction Staging Given the information available, the Cut and Cover method will probably be the more conservative method to complete the project with the least amount of risk under the given conditions. Driving sheet piles along with a controlled dewatering program, worked well in Atlantic City, New Jersey (See Appendix C). A typical construction staging sequence is shown on Drawing Sheet 6 that would allow for the various
structural elements to be placed. Due to the width of the structure and need to minimize traffic disruption, the tunnel will be constructed one half at a time. The Southbound tunnel cell would be constructed first while two lanes of traffic are maintained in each direction on the northbound side of the existing highway. Once construction of the southbound side of the tunnel is completed, traffic will be routed inside the completed southbound tunnel cell. The completed tunnel should have all tunnel lighting, ventilation and other safety features installed prior to allowing vehicular traffic even on a temporary basis. The northbound tunnel cell could then be constructed. The typical construction staging sequence and corresponding Traffic Staging Sequences are shown on Drawing Sheet 6 The landside substructures for the Railroad Bridge are assumed to be founded on piles or a very deep spread foundation. For the purpose of this study no load from the new construction will be imposed on the existing substructure. Supporting excavations adjacent to waterways always impose a challenging set of circumstances. Providing lateral support and stability of the subgrade materials during construction is of extreme importance. For the Atlantic City Tunnel, jet grouting was used to assist in improving subgrade soils as necessary. Overlapping jet grout columns were used running perpendicular to the sheet pile walls, adding stability to the base of the excavation and temporary sheet pile wall. Given the similar conditions expected on this project and the state of the art of ground modification techniques available, we believe that a contractor would take advantage of such tools and have included ground modification as part of our estimate. ### VII. CONSTRUCTION AND MAINTENANCE COST ESTIMATES A construction estimate has been prepared utilizing the following assumptions: - 1) The base year for the estimate is 2002. - 2) Escalation is assumed at 2.75% per year. - 3) The construction period is assumed to be three (3) years beginning around April 2010. - 4) A contingency of 50% has been added to allow for the unknowns associated with preparing a conceptual stage design with limited information. - 5) Both Engineering and Management Costs have been included at 10% each. ConnDOT administrative costs have been left open for inclusion by ConnDOT. For the purposes of an approximate annual Operation and Maintenance (O&M) we have prepared an approximate cost for a crew undertaking normal maintenance functions in a highway tunnel. Those items are included in the description of the O&M estimate. In addition, a recent bid for O&M cost on the Lindbergh Boulevard Runway Bridge/Tunnel in St. Louis, also cut and cover (yet to be constructed), was around one million for two years. # IX.1 ORDER OF MAGNITUDE CONCEPTUAL ESTIMATE | | Utility Investigation prior to Cutoff Wall Construction Relocate Utilities prior to Cutoff Wall Construction Widen northbound lanes eastward to River Bank 15" x 4300° Construct Crossover from southbound to widened roadway - 2 Ends Provide Median Barrier, Signage and Traffic Markings for Crossover Traffic Management for Crossover Demolish Pedestrian Tunnel @ Sheetpile Cutoff Wall F&I Sheetpile Cutoff Wall w/ Tlebacks west side S.B. Lane F&I Sheetpile Cutoff Wall w/ Tlebacks east side S.B. Lane Excavate for Retaining Wall - Southbound 495'L x 16.5'D x15'W Excavate for Boat Section - Southbound 575'l x 40'D x 82'M | 3,300
84,500
25,000
500 | 7 J 3 | \$50.00 | \$165,000.00 | 10% S18 500 00 | Cond 6% | and Land | COMMENS | |---------------|--|---|-----------|-------------|-----------------|----------------|----------------|-----------------|---------------------------------| | | ate Utilities prior to Cutoff Wall Construction n northbound lanes eastward to River Bank 15'x 4300' truct Crossover from southbound to wildened roadway - 2 Ends te Median Barrier, Signage and Traffic Markings for Crossover c Management for Crossover oilsh Pedestrian Tunnel @ Sheetpile Cutoff Wall theetpile Cutoff Wall w/ Tiebacks west side S.B. Lane wheetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W | 3,300
64,500
25,000
500
500 | FJ SF | 200 | | | | | | | | northbound lanes eastward to River Bank 15'x 4300' toot Crossover from southbound to widened roadway - 2 Ends de Median Barrier, Signage and Traffic Markings for Crossover c Management for Crossover lish Pedestrian Tunnel @ Sheetpile Cutoff Wall heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W | 64,500
25,000
500
500 | SF | \$100.00 | \$330,000,000 | 316,300.00 | 00.008,86 | \$191,400.00 | | | | Truct Crossover from southbound to widened roadway - 2 Ends de Median Barrier, Signage and Traffic Markings for Crossover: C. Management for Crossover Jish Pedestrian Tunnel @ Sheetpile Cutoff Wall heetpile Cutoff Wall w/ Tiebacks wast side S.B. Lane theetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495L x 16.5'D x15'W wate for Retaining Section - Southbound 575! x 40th x 824W | 500 500 500 | 5 | 00.00 | 924 000,000 | 00:000:00 | 00.008,812 | \$382,800.00 | | | | 24 Median Barrier, Signage and Traffic Markings for Crossover 2 Management for Crossover 2 Management for Crossover 2 Ish Pedestrian Tunnel @ Sheetpile Cutoff Wall 4 heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane 4 heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane 4 yate for Retaining Wall - Southbound 495L x 16,5D x15W 4 yate for Boat Section - Southbound 575l x 40th x 829W | 2009 | | 912.00 | 97.4,000.00 | \$77,400.00 | \$46,440.00 | \$897,840.00 | | | | Le wecken banner, Signage and Iranic Markings for Crossover C Management for Crossover Jish Pedestrian Tunnel @ Sheetpile Cutoff Wall heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W vale for Boat Section - Southbound 575'l x 40'th x 22'W | 200 | 55 | \$12.00 | \$300,000.00 | \$30,000.00 | \$18,000,00 | \$348,000.00 | 50' x 250' x 2 Each | | | Also Pedestrian Tunnel @ Sheetpile Cutoff Wall heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W | 200 | F. | \$100.00 | \$50,000.00 | \$5,000.00 | \$3,000.00 | \$58,000.00 | | | | Ilish Pedestran Lunnel @ Sheetpile Cutoff Wall heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W | , | <u>.</u> | \$100.00 | \$50,000.00 | \$5,000.00 | \$3,000.00 | \$58,000.00 | | | | heetpile Cutoff Wall w/ Tiebacks west side S.B. Lane heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane wate for Retaining Wall - Southbound 495'L x 16.5'D x15'W wate for Boat Section - Southbound 575! y 40th x 22'W | 7 | Locations | \$25,000.00 | \$50,000.00 | \$5,000.00 | \$3,000.00 | \$58,000.00 | | | | heetpile Cutoff Wall w/ Tiebacks east side S.B. Lane rate for Retaining Wall - Southbound 495'L x 16.5'D x15'W | 3,300 | 5 | \$1,750.00 | \$5,775,000.00 | \$577,500.00 | \$346,500,00 | \$6.699 000 00 | | | | rate for Retaining Walt - Southbound 495'L x 16.5'D x15'W rate for Boat Section - Southbound 575'l x 4rth x 82'W | 3,300 | 15 | \$1,750,00 | \$5,775,000.00 | \$577,500.00 | \$346,500,00 | \$6.699,000,00 | | | 10 Excava | vate for Boat Section - Southbound 575! x 40th x 82th | 4,500 | ζ | \$10.00 | \$45,000.00 | \$4.500.00 | \$2.200.00 | 00.000,000,00 | OTA 4 000 A A TO | | 11 Excava | ** 70 4 70 14 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 69,850 | λ | \$10.00 | \$698.500.00 | \$69.850.00 | 641 940 00 | 00.000,000 | | | 12 Excava | Excavate for Tunnel - Southbound 1560'L x 64'D x 82'W | 303,220 | ζ | \$10.00 | \$3.032,200,00 | \$303 220 00 | \$181 932 00 | 00.000.00 | \$610,500,00 STA 14500 10 14625 | | 13 SB -So | SB -Soll Removal to Landfill - Inc. Testing, Re-Load, Tipping Fee | 566,355 | Ton | \$40.00 | S22 654 200 00 | \$2.265.420.00 | 81 250 251 00 | 00,265,710,00 | 014107010701100 | | 14 SB -8c | SB -Boat and Tunnel Underground Utility Installation | 3.300 | LC. | \$50.00 | 8188 000 00 | 940 000 000 | 00.253,432,00 | 340,278,872.00 | | | 15 Dewatering | terino | 8 | | 000 | 00,000,001 | 00.00c,01¢ | \$8,900.00 | \$191,400.00 | | | | 20.00 John John John John John John John John | જ | Months | \$50,000.00 | \$1,800,000.00 | \$180,000.00 | \$108,000.00 | \$2,088,000.00 | | | Т | Grouned Midd Stab - 2 × 52 × 2950 | 27,500 | SY | \$25.00 | \$687,500.00 | \$68,750.00 | \$41,250.00 | \$797,500.00 | | | | 55 - rorm and Pour Retaining Wall (S) - 495'L x 16.5'D | 8,200 | SF | \$40.00 | \$328,000,00 | \$32,800.00 | \$19,680.00 | \$380,480.00 | \$380,480.00 STA 1+300 to 1+450 | | Т | SB - Form and Pour Retaining Wall (N) - 328'L x 10.3'D | 3,400 | SF | \$40.00 | \$136,000.00 | \$13,600.00 | \$8,160.00 | \$157.760.00 | \$157.760.00 STA 2+370 to 2+470 | | T | SB - Form, Pour, Finish Boat Section (S)- Full Width 575'L x 26'D x 82'W | 1,320,200 | CF | \$6.70 | \$8,845,340.00 | \$884,534.00 | \$530,720.40 | \$10,260,594.40 | STA 1+450 to 1+625 | | _ | SB - Form, Pour, Finish Boat Section (N)- Full Width 164'L x 26'D x 82' W
 349,648 | بى
15 | \$6.70 | \$2,342,641.60 | \$234,264.16 | \$140,558.50 | | | | \exists | SB - Form, Pour, FinIsh Boat Section (N)- AT Pier 722'L x 26'D x 46'W | 863,512 | F) | \$6.70 | \$5,785,530.40 | \$578,553.04 | \$347.131.82 | \$6 711 215 26 | | | | SB -Form, Pour, Finish Cut and Cover Tunnel 1558'L x 30'D x 64'W | 2,991,360 | క | \$9.75 | \$29,165,760.00 | \$2,916,576.00 | \$1,749,945.60 | \$33 832 281 60 | STA 1+625 to 2+100 | | | Backfill with impervious Material 3300' x 25'D x 4' Wide | 12,250 | λ | \$125.00 | \$1,531,250.00 | \$153,125.00 | \$91.875.00 | \$1 776 250 00 | 001+701070-1-010 | | | F&I Sheetpile Cutoff Wall w/ Tlebacks River Side N.B. Lane | 3,300 | 5 | \$1,750.00 | \$5,775,000.00 | \$577.500.00 | \$346 500 00 | 00.000.000.00 | | | T | Excavate for Retaining Wall - Northbound 495'L x 16.5'D x15'W | 4,500 | ζ | \$10.00 | \$45,000.00 | \$4,500.00 | \$2,700.00 | \$52,000,00 | | | 26 Excaval | Excavate for Boat Section - Northbound 575'L x 40'D x 82'W | 69,850 | СУ | \$10.00 | \$698,500.00 | \$69,850.00 | \$41,910.00 | \$810,260.00 | | ## Route 9 Tunnel Study, Middletown, CT-Feasibility Study Report State Project No. 82-279 | Cons. Sequence | Description | Quantity | JED. | Unit Cost | Total Cost. | OH & Profit | Gen | Trital Price | | |----------------|--|-----------|------------------|-------------------|-----------------------|--|--------------------------------|------------------|---| | 27 | Excavate for Tunnel - Northbound 1560'L x 64'D x 82'W | 303,220 | ò | \$10.00 | \$3 032 200 00 | \$2000000 | Cond:-6% | | 9 | | 28 | NB -Soil Removal to Landfill - Inc. Testing, Re-Load, Tipping Fee | 566,355 | T _o L | \$40.00 | \$22,654,200.00 | 93 365 420 00 | 00.252,00 | \$3,517,352.00 | | | 58 | NB -Boat and Tunnel Underground Utility Installation | 3.300 | щ | 850.00 | 22,004,200,00 | \$2,265,420.00 | 51,359,252.00 | \$26,278,872.00 | | | 30 | Grouted Mud Stab - 2' x 82' x 2950 | 27 500 | i d | 00:009 | 00.000,000 | 00.00c,aT& | 29,900.00 | \$191,400.00 | | | 31 | NB - Form and Pour Retaining Wall (S) - 495" × 18 5" | 200, 0 | 5 6 | 00.624 | \$687,500,00 | \$68,750.00 | \$41,250.00 | \$797,500.00 | | | 32 | NB - Form and Pour Retaining Wall (N) - 3281 v 10 20 | 0,400 | ر
ا | 640.00 | \$328,000.00 | \$32,800.00 | \$19,680.00 | \$380,480.00 | | | 33 | NB - Form Point Einich Boot Sootion (S) Eulistate Face | 004.0 | ا م | \$40.00 | \$136,000.00 | \$13,600.00 | \$8,160.00 | \$157,760,00 | | | 5 | NP COME OF THE POST DESCRIPTION WIGHT STORY AND A SEW | 1,320,200 | <u>5</u> | \$6.70 | \$8,845,340.00 | \$884,534,00 | \$530,720.40 | \$10,260,594.40 | | | 5 8 | NB - TOLIN, FOUR, FINISH BOOK Section (N)- Full Width 164'L x 26'D x 82' W | 349,648 | P | \$6.70 | \$2,342,641.60 | \$234,264.16 | \$140,558.50 | \$2,717,464.26 | | | 8 8 | NB - rorm, Four, Finish Boat Section (N)- AT Pier 722'L x 26'D x 62'W | 1,163,864 | F. | \$6.70 | \$7,797,888.80 | \$779,788.88 | \$467,873.33 | \$9.045.551,01 | | | S | NB -Form, Pour, Finish Cut and Cover Tunnel 1558'L x 30'D x 64"W | 2,991,360 | ይ | \$9.75 | \$29,165,760.00 | \$2,916,576,00 | \$1 749 945 60 | \$33 842 281 BO | | | 37 | Backfill with Impervious Material 3300' x 25'D x 4' Wide | 12,250 | ò | \$125.00 | \$1 531 250 00 | 6153 125 00 | 904 975 00 | 00:102;300;000 | | | 38 | F&I Vent Bldg, Pump Station w/ Electric Substation | - | <u></u> | \$5 000 000 00 | 00.002,100,10 | 4150,145,00 | 00.070,186 | 00,062,077,18 | | | 88 | Tunnel Power, Lighting, Mechanical | | 3 : | 00.000,000 | 00.000,000,00 | \$500,000,000
\$500,000,000 | \$300,000.00 | \$5,800,000.00 | | | 40 | Destroy City to Code 4401. | 000,1 | 5 | \$6,000.00 | \$9,600,000.00 | \$960,000.00 | \$576,000.00 | \$11,136,000,00 | | | } | nesigne one to cade 140 x 4000 | 260,000 | R. | \$7.50 | \$4,200,000.00 | \$420,000,00 | \$252,000.00 | \$4,872,000.00 | | | | | | | | | | Subtotal | \$223,288,634,78 | | | | | | | Escalation to Mid | point of Construction | Escalation to Midpoint of Construction 2011 – 2.75% at 9 1/2 Years = 1.294 | 1/2 Years = 1.294 | \$65,668,964.20 | | | | | | | | | | Subtotal | \$288,957,598.78 | | | | | | | | | Design (| Design Contingency - 50% | \$154,794,846.06 | | | | | | | | | Total C | Total Construction Cost | \$443,752,445.00 | | | | | | | | | Engineering De | Engineering Design Costs - 10% | \$44,375,244,00 | | | | | | | | Engineering Coa | Engineering Construction Management Costs - 10% | nent Costs - 10% | \$44.375.244.00 | | | | | | | | | TOTAL | TOTAL PROJECT COST | \$532,503,000 | | | | | | | | | | | | | # IX.2 MAINTENANCE - ANNUAL ESTIMATED COSTS | Description | Number | Quantity | Unit | Material Price | Total Material | Labor Price | l abor Total | Equipment | Equipment Equipment | | |----------------------------------|----------|----------|---|----------------------------|---|------------------------------|----------------|-----------|---------------------|-------------| | Crew Cost | | | | | | | | Price | Total | ।ठावा | | Heavy Equipment | - | 40 | Hrs | | | | | 000 | | | | Operators | - | 4 | Hrs | | | | | \$50.00 | \$2,000.00 | \$2,000.00 | | Labor Foreman | | É | | | | 438.77 | \$1,550.80 | | | \$1,550.80 | | Laborers | - - | Ç S | 2 | | | \$32.50 | \$1,300.00 | | | \$1,300.00 | | Terror Deivors | 4 | 04 | ST. | | | \$29.00 | \$4,640.00 | | | \$4,640.00 | | NAION CIVELS | | 04 | Irs | | | \$29.74 | \$1,189.60 | \$25.00 | \$1,000.00 | \$2,189.60 | | wisc waterials | - | | ST | \$1,000.00 | \$1,000.00 | | | | | \$1,000,00 | | | | | | Subtotal | \$1,000.00 | | \$8,680.40 | | \$3,000.00 | \$12,680.40 | | | | | Shift Di | Shift Differential - 1.15% | \$1,000.00 | | \$9,982.46 | | \$3,000.00 | \$13 982 46 | | Description | Quantity | Unit | Unit Cost | Total Cost | OH & Profit | Gen Cond 6% | Total Price | | | | | Lighting | 2 | Weeks | \$14,000.00 | \$28,000,00 | \$2 BUO OO | 00 000 10 | 200,000 | | | | | Power Washing - Cleaning | 8 | Weeks | \$14,000,00 | 8112 000 00 | 61,000.00 | 91,000,00 | \$32,480.00 | | | | | Cleaning Catch Basins | , | | | 20.000.00 | 911,200.00 | \$6,720.00 | \$129,920.00 | | | | | 0.000 | 4 | Weeks | \$14,000.00 | \$56,000.00 | \$5,600.00 | \$3,360.00 | \$64,960.00 | | | | | Substation Maintenance | - | S, | \$100,000.00 | \$100,000.00 | \$10,000.00 | \$6,000.00 | \$116,000.00 | | | | | Pump Station Maintenance | - | L.S | \$100,000.00 | \$100,000.00 | \$10,000.00 | \$6,000.00 | \$116,000.00 | | | | | Jet Fan Cleaning and Maintenance | 4 | Weeks | \$14,000.00 | \$56,000.00 | \$5,600.00 | \$3,360.00 | \$64.960.00 | | | | | Paving Upgrade - 2 " Resurfacing | 2,500 | Ton | \$40.00 | \$100,000.00 | \$10,000.00 | \$6.000.00 | \$116,000,00 | | | | | Pavement Ke -Markings | - | S | 20,000.00 | 20,000.00 | 2,000.00 | 1.200.00 | 23.200.00 | | | | | | | | | | | Subtotal | \$663,520.00 | | | | | | | Esc | Escalation to Completion of Construction 2013 - 3.5% at 11 Years = .460 | ion of Constructio | n 2013 - 3.5% at | 11 Years = .460 | \$305,219.20 | | | | | | | | | | Contingency | Contingency (on total) - 25% | \$242,184.80 | | | | | | | | | Total Estin | Total Estimated Annual Maintenance Costs | ntenance Costs | \$1,210,924.00 | | | | | | | | | Esti | Estimated Operational Energy Costs | al Energy Costs | \$717,590.00 | | | | | | | | | Total Estimated | Total Estimated Annual Cost to Operate Tunnel | Operate Tunnel | 1,928,514.00 | | | | | | | | | | | | | | | | ### VIII. FINAL CONCLUSIONS AND RECOMMENDATIONS The intent of this report is to investigate and document the feasibility of constructing a roadway tunnel along Route 9 in Middletown. For the purpose of this study, the feasibility of constructing a cut and cover tunnel was investigated. Based on limited existing condition information and conservative assumptions, it is determined that at an estimated price of \$550 million plus \$1.9 million per year in maintenance of a roadway tunnel, approximately 1,200 feet in length can be constructed. The benefit of improved access to the waterfront would be provided to the City of Middletown through the implementation of the tunnel. However, waterfront access would be limited by a fence along both sides of an active rail line. Pedestrian access would be restricted to gate controlled pedestrian crossings. Based on the costs and limitations on pedestrian traffic, the overall benefit of the tunnel appears to be disproportionate with the anticipated costs. Therefore, we recommend the pursuit of supplementary alternatives to provide improved waterfront access. Throughout the Preliminary Engineering phase of the Route 9 Study an alternative concept for enhancing pedestrian access to the riverfront was considered by the Route 9 Corridor Advisory Committee (CAC). This alternative to a tunnel provides a pedestrian platform over deKoven Drive, the railroad tracks and Route 9. This pedestrian promenade could be connected to the existing pedestrian platform built as a part of the new police station. In addition to the benefit of direct pedestrian access from the Main Street area, the new platform could lead into the availability of air rights for development over Route 9. This potential dual use provides the access that the City desires and provides potential for development right along the waterfront. It is our recommendation that the City and the State enter into a discussion over the potential funding of a pedestrian platform over Route 9. The platform would address the City's desire to enhance their access to the riverfront and would provide a more economical alternative for the Department of Transportation. Additionally, the platform would have a minimal impact on existing traffic operations, while the construction of the tunnel would have a major impact on traffic during
construction activities. During our discussions with the Middletown merchants and residents, limiting the adverse impacts of construction was a priority. ### **APPENDIX-A** ### **Photographs** VIEW LOOKING: NORTH DESCRIPTION: PROVINCE & WORCHESTER RAIL ROAD BRIDGE OVER CONNECTICUT RIVER VIEW LOOKING: SOUTH DESCRIPTION: PROVINCE & WORCHESTER RAIL ROAD BRIDGE OVER ROUTE 9 SOUTHBOUND PHOTO NO. 2 VIEW LOOKING: SOUTH DESCRIPTION: ARRIGONI BRIDGE, OVER ROUTE 9 PHOTO NO. 3 VIEW LOOKING: WEST **DESCRIPTION: UNION STREET ROUTE 9 OVERPASS** PHOTO NO. 4 VIEW LOOKING: NORTH DESCRIPTION: HARBOR PARK ALONG CONNECTICUT RIVER VIEW LOOKING: NORTH DESCRIPTION: EXISTING RESTAURANT ALONG CONNECTICUT RIVER PHOTO NO. 6 VIEW LOOKING: WEST DESCRIPTION: HARBOR PARK PEDESTRIAN TUNNEL VIEW LOOKING: NORTH DESCRIPTION: ACCESS TO ROUTE 9 FROM UNION STREET PHOTO NO. 8 **UNDERPASS** VIEW LOOKING: SOUTH DESCRIPTION: WASHINGTON STREET INTERSECTION VIEW LOOKING: NORTH DESCRIPTION: WASHINGTON STREET INTERSECTION WITH ROUTE 9 SOUTHBOUND PHOTO NO. 10 VIEW LOOKING: SOUTH DESCRIPTION: DEKOVEN DRIVE AT WASHINGTON STREET PHOTO NO. 11 VIEW LOOKING: SOUTH DESCRIPTION: ROUTE 9 DEKOVAN EXIT PHOTO NO. 12 #### **APPENDIX-B** ## Schematic Drawings #### **List of Drawings** | SHEET
NO. | TITLE | |--------------|---| | 1 | GENERAL PLAN | | 2 | GEPLOGICAL PROFILE | | 3 | CUT AND COVER PLAN AND PROFILE PART-1 | | 4 | CUT AND COVER PLAN AND PROFILE PART-2 | | 5 | CUT AND COVER TYPICAL SECTIONS | | 6 | TYPICAL CONSTRUCTION STAGING: CUT AND COVER PLAN AND SECTIONS | | 7 | TRAFFIC STAGING: STAGE 1 | | 8 | TRAFFIC STAGING: STAGE 2 | | 9 | TRAFFIC STAGING: STAGE 3 | | 10 | TRAFFIC STAGING: STAGE 4 | #### APPENDIX-C ### Magazine Article ENR (June 18, 2001), pp. 42-44 Making the Right Cut on Atlantic City Route # THE TOP 100 - •DESIGN-BUILDERS - **CONSTRUCTION MANAGERS** enr.com A Publication of The McGraw Hill Companies & June 18, 2001 \$3 HIGH STAKES Tunnel-highway connector will provide flood evacuation for the city as well as faster casino access. n a city of gamblers, no high-stakes undertaking has more significant risks and rewards than that of the \$330-million Atlantic City-Brigantine Connector. Dealt a design-build card, the joint venture team building the 2.5-mile route is playing to win-nearing completion of a 2,000-ft cut-andcover tunnel, 10 new bridges and 2.3 miles of new highway in extremely tight conditions with many challenges. Yonkers Contracting Co., Yonkers, N.Y., with Granite Construction, Watsonville, Calif., tackled the New Jersey project's 30month schedule, difficult geology and a range of other challenges from wetlands to relocating powerplants. Since work began after 5 to 10% of design in late 1998, the team has incorporated a number of innovative methods into the project—usually, but not always, successfully. "You see the people coming here to gamble," notes Lawrence W. Klein, Yonkers vice president for construction. "We're contractors. We gamble every day. We don't need to go to the casinos." The team negotiated with the South Jersey Transportation Authority (SJTA), which will own and operate the connector, to push back an original completion date of May 1 several times to July 16. In the interim, there have been lawsuits by residents and casino mogul Donald Trump, investigations by environmental agencies, a protest over a New Jersey Transit rail crossing and an endless technical obstacle course. "There are controversial topics," says Randy Merrill, senior engineer for Parsons Brinckerhoff and Goodkind & O'Dea, program managers for the authority. "But the bottom line is that the tunnel will be open by mid-July." Flanked by Penrose Canal just 15 ft on one side and houses on the other, the four-lane connector dips under U.S. Highway 30 and links to the Atlantic City Expressway. It will be a seamless route connecting some 17,000 vehicles a day from the expressway to the resort's marina district—and provide a flood evacuation route for the island of Brigantine. ROLL OF THE DICE. Hotelier Steve Wynn, planning a Mirage Resort in Atlantic City, financed \$110 million of the project as part of a partnership with the SJTA and the state Casino Reinvestment Development Authority. The transportation agency itself provided an additional \$125 million, and another \$95 million came from the state transportation trust fund. "We in turn will get back parking fees plus tolls," says James A. Crawford, SITA's executive director. The three owners agreed to use designbuild, which is not uncommon in casino construction, notes Joseph Iorio, Yonkers vice president. The project would have taken another three or four years with design-bid-build, estimates Carl Petrillo, founder of Yonkers. Design began under the lead of URS Corp.'s New York City office. Then, the Yonkers-Granite team edged out competing teams led by Slattery Skanska, Whitestone, N.Y., and Schiavone Construction, Secaucus, N.J. For a while, "Yonkers had three engineers sitting in the URS office daily," recalls Klein. Now, "we have biweekly coordination meetings" with representatives from PB, the three owners and Frederic R. Harris, New York City, as the construction inspector." The project team is also one of the few nationwide in heavy construction that is operating under the U.S. Occupational Safety & Health Administration's Volun- tary Protection Program, says Tom Smith, Yonkers safety program director. OSHA inspected the project intensively after the first year and has exempted it from further regular inspections. MAKE WAY. Utilities of every type, including a 69,000-ky power line, 36-in. sewer pipes and 48-in. water lines, had to be relocated, says Bruce Carnovale, Yonkers project engineer. The team also demolished or moved 20,000-sqft of powerplant facilities to make room, shifted 2,000 ft of rail tracks and rebuilt 3,680 ft of marina bulkhead, plus a small park. Building the grade crossing at New Icrsey Transit tracks caused some upset, but "we determined it was more important to have a full interchange for the back of the convention center than to try to go over or under [the tracks]," says Crawford. "We couldn't do both." Site access is restricted to existing right of way, so equipment and workers-245 at peak for ATLANTIC CITY-BRIGANTINE CONNECTOR Harrah's Trumo Marina Route 30 Atlantio City Bacharach Blvd. Expressivat Convention Carl of tunnel excavation. When the team proposed the method, an alternative to the designers' preferred top-down design, "we evaluated the request and agreed," says PB's Merrill. Hayward Baker Inc., Odenton, Md., designed giant jet grout columns to be drilled perpendicular to the alignment, forming a subgrade brace. "This is the first time we've used jet grout columns to support a cofferdam this way," says Dave Cacoilo, Mueser Rutledge partner. "The system is unique in that it's not a solid mat of grout." The subgrade cones are typically 13 ft in dia., 7 ft deep, and sealed with steel sheeting. As workers excavated down, they installed a top row of tiebacks. Once tiebacks were in, they could excavate down to the bottom. The system allowed for almost half the typical weight of steel sheets and only one row of tiebacks, notes Cacoilo. The tunnel required con- the contractor and 150 for subcontractors—navigate past struction of a 30-ft-dia., 65-ft deep pump station system each other. Nine homes were acquired. 'The owners supported by cement columns. Soil mix paid dearly for some of those acquisitions, but there problems and leaks have was no contesting," Iorio says. required accelera-Yonkers chose a support excavation system with no interior bracing, designed by New York City-based Mueser Rutledge Consulting Engineers, for 250,000 culyd BUOYANT Four-lane, 2,000-ft tunnel below canal level is anchored down by the weight of concrete slabs rather than piles, BY NANCY SOULLARD FOR EMR. PHOTO COURTESY OF YONKERS GRANTE JOINT VENTURE/GREGG KOH tion of scheduling to six 10-hour days to pressure-grout voids, says Michael Bianchini, Yonkers project manager. The tunnel, 90 ft wide and 20 ft below canal level, avoids buoyancy in the wet soil by the extra weight of the bottom slabs, up to 7 ft thick and placed in 50-ft sections. Precast roof slabs for the tunnel are reinforced with cast-in-place slabs on top. Twenty-four jet fans provide ventilation, and three pumps with capacity of 4,900 gal per minute protect against a 250-year flood. BRIDGES. The bridges typically have cast-in-place stub abutments wrapped with special mechanically stabilized retaining walls, supplied by Reinforced Earth Co., Vienna, Va. The embankments required 300,000 cu yd of earth, mostly transported from tunnel excavation. The 30-ft elevated roadway required 130,000 cu yd of surcharge, up to 18 ft. Settlement reached 4.5 ft at its worst, says Carnovale. Galvanized wire baskets with fabric were interlocked on the 23 retaining walls. "The fabric allowed us to preload the abutments areas to settle,' says Bianchini, Amid swarms of gnats, workers hung precast panels on the galvanized straps after settlement. The surcharging process provided a good lesson learned from the confractor, says Robert Fulton, inspection team head for Harris. An ambitious design for cutting back on piles was successful, but it took some trial and error. The bridges rest on 16-in.-dia. steel shell piles filled with concrete, up to 90 ft deep, says Bianchini. The original design called for 969 piles, and the URS design called for 468. "We thought early on that there would be large savings, but that dwindled down," he adds. The piles, based on existing piles for the nearby convention center, were designed for 450-ton capacities. "We rarely attained that," he says. Adds Klein: "We pushed [URS] to be as optimistic as it could." Piles were extended with splices to achieve load capacity, and seismic loads as well. Actual construction included 512 piles, still less than the
original design. CONTINGENCIES. "The key here was that there was a large enough contingency for the contractor," says Crawford, though Klein notes that "the owners sometimes wanted us to address issues without using those funds." In addition to the \$28-million fund are \$12 million in contractor change orders and \$8 million in owner-paid changes. The team will get 85% of whatever is left of the contingency fund upon completion by July 16. Every subsequent week, that percentage would be reduced by 5%, plus \$64,000 a day would be assessed in fines. Crawford says there is some \$20 million left. The owners added \$4 million in contingencies, mostly relating to remediation of contaminated soils. "We found benzene, industrial wastes, and underground tanks with leaks," says Klein. Last year, the U.S. **Environmental Protection** Agency investigated complaints that contaminated soil was being pumped into the canal, tinting the banks orange. But the state Dept. of Environmental Protection found contaminants were within acceptable levels. "They found only that with the dewatering system, we were pulling up iron, which is naturally occurring," says Klein. The team agreed to reconstruct wetlands where discoloration occurred and instituted a weekly monitoring system. Now the pumping operation of 5.5 million gal per day is completed. The SJTA last month awarded a \$1-million contract to Parsons Brinckerhoff for design work on a turn-around ramp that will allow traffic on the connector to head toward Trump's casino—thus ending that mogul's lawsuits. Yonkers completed a \$20-million job to compact a landfill, called the H-Tract, and cap it with 2 million tons of soil for the Mirage. It is now working on a \$17-million contract for the casino foundation work. But after all the challenges tackled on the connector, Carnovale says halfjokingly: "Unless our next job is \$500 million, we won't know what to do with ourselves." By Aileen Cho in Atlantic City FOUNDATIONS Jet grout columns and steel sheeting eliminated need for elaborate bracing. #### APPENDIX-D ### Boring Logs and Data | oring C | | | 6 | | | | | | NECTICUT | | | e No.
ikd. By | 40808
RME | |--------------|--------------------|--|-----------------------------|--------------------------|---------------------------------------|---|------------------------------------|----------------------|----------------------------|-------------|--------|---------------------------------------|-----------------------| | _ | 'n | GZA G | EOENVIR | ONMEN | TAL, INC. <u>Casing Sampler</u> Groun | | | | | | | dings | | | ncman | | | GUSTINE | | Тур | . HSA | S.S . | Date | Time | Dept | h | Casing | Stab. Time | | | | AL AU | | | | /O.D. 4-1/4° | 2° O.D. | 12/9 | 1100 | 18.5 | B' | 20, | 5 Minutes | | ZA
coEnvi | ronment | at
JIM WE | urant | | | nmer Wt. | 140 LB. | | | | | | | | ep. | | | | (10 (0) | | nmer Fall | 30. | | 1 | | \neg | | | | ate Sta | | | 1 End 12 | 10/91 | | | | | 1 | | 1 | | | | catton | | SEE PL | | C: .(1) | Oth | c! | | L | <u> </u> | ·. | | | | | S.Elev. | | T + j- | | • | liddletown | | Sample | | Stratum | | | Equipmen | Installed | | | , } | , | ple Inform | Blows/ | Field | 1 | & Classification | | Description | - 13 | 1 | · · · · · · · · · · · · · · · · · · · | | | | No. | Pen./
Rec. | (Fi.) | Pionz, | Test Data | | | · | · · · · · · · | | - | | | | \top | S-1 | 24/12 | 0-2 | 3-2 | ND | Loose, brown, fine SA trace (+) Roots, Gras | 22 | , | 10° TOPSO | L | 1. | | | | | | | | 3-5 | | Last 2": Red-brown, fit
SAND, trace Silt | ne to medium | | | • | | EQU | NO
IPMENT
ALLED | | | | | | | |] SAIND, Hace Sin | | | FINE | | | INST | ALLED | | | 1 | | | | |] | | ļ | TO
MEDIU: | , l | | | | | | | | | | |] | | | SAND
(FILL) | | | | | | 5 | S-2 | 24/8 | 5-7 | 3-2 | ND | Loose, red-brown, fine
SAND, some (-) line | to coarse | | (11227 | | | | | | - | | | | 3-3 | | (+) Silt, trace (-) Roc | ots. Brick | | | | | | | | | 1 | | | | | Chip | | | | | | | | | - | | | | | | | | | | 1 | | | | | | | | - | | | | | | 10.5 | ļ | | | | | 10 | S-3 | 24/18 | 10-12 | 2-2 | ND | Top 4": Red-brown, fi | ne to coarse | 1 | 10.5 | | | | | | - | † | | | 2-2 | | 3. CA Silic | | | CLAYE | Y | | | | | | | - | | | | Last 14": Soft, red-bro | own, Clayer | | SILT | | | | | | | | | | i | | 1 | | | 14" | | | | | | - | | | <u> </u> | | | 1 | | | | | | | | | 15 | S-1 | 24/20 | 15-17 | 12-17 | ND | Dense, red-brown, fin | e to medium | | | | | | | | - | + | | | 29-21 | 1 | SAND, some (+) Silt
to coarse Gravet | i, little, tine | | | | | | | | - | | | | - | | | | | | | | | | | - | | | - | | | 1 | | | | | | | | | - | | | | | | 1 | | | GRAVEL
SILTY | - | | | | | 20 | S-5 | 24/15 | 20-22 | 13-21 | ND | Dense, red-brown, fin | e (+) to coarse | | SAND | | | | | | } | 3-3 | 24/12 | _0-22 | 28-35 | 1,10 | SAND, little (+) Gra | ivet, little Silt | | | | | | | | - | + | | | رد-ص | | - | | | | | | | | | <u> </u> | - | - | | | | 1 | | | | 1 | 2. | | | | | | - | | - | - | -{ | | | | | | | | | 25 | 101 | 31.05 | 16 33 | 22.40 | ND | Very dense, red-brow | m fine(+)to | | | | | | | | - | S-6 | 24/15 | 25-27 | 22-68 | אַט | coarse SAND, little (| +) fine Gravel. | | | | | | | | | | - | | 66-35 | 1 | little (+) Silt | | | | 1 | | | | | | _ | | | | - | 4 | | | | | | | | | <u> </u> | - | | - | - | | 4 | | | | | Ì | | | | _ _ | | | <u> </u> | <u> </u> | 1 | 20101 112 | Annales | | <u> </u> | | ! | | | | R | 1. Samp
2. Auge | iles sereer
r chatter, | ned in the l
hard drilli | ield using
ng at appr | a T.E.I. 580I
oximately 23 | BOVM, $ND = None D$ feet. | retetted. | | | | | | | | m
a | _ | | | | | | | | | | | | | | f
k | | | | | | | | | | | | | | | 5 | | | | | | | | | | | la ta | n laval | | | aadi n | as have | heen m | ade at ti | imes and | under cond | ndaries between soi
ditions stated. Fl
ments were made. | i types, transi
uctuations of g | tions ma
roundwat | y be gradu:
er may occi | nt qne | to | other | | | Coi
27 I
Vei | rsulti
Vack
mon, | ng Eng
Road | ineers/G | | IAL, IN | IC,
ntal Scientis | IS | PROPOSE
MIDDLETO | ED COUR
WN, CON | THOUSE
NECTICUT | | Boring No
Page
File No.
Chkd. By: | 2 of 3
40808 | |--------------------|------------------------|----------------|------------------------|-------------------------------|----------------------|----------------------|--|---------------------|--------------------|--------------------|-------------|--|--------------------| | 301 | ing C | o | GZA (| GEOENVI | RONMEN | TAL. INC. | Casing | Sampler | | Groun | dwater l | Readings | | | no. | man | <u></u> | ALA | JGUSTINI | <u> </u> | Ту | × HSA | S.S. | Date | Time | Depth | Casing | Stab. Time | | Z | | ronmen | ıral | | | I.D | ./O.D. 4-1/4* | 2° O.D. | 12/9 | 11:00 | 18. | 8' 20 | o' 5 Minutes | | lep | | | JIM W | нгте | | На: | mmer Wt. | 140 LB. | <u> </u> | | | | | | at | e Star | n | 12/9/ | 91 End 12 | /9/91 | Had | nmer Fall | | | | | | | | oca | Hon | | SEE P | LAN . | | Oth | er | | | | | | | | _ | Elev. | 5 | T +/- | Datum | City of N | diddletown | | | | | | , | | |) | C B
S L | | Sa | mple Inform | mation | | _ | Sample | | Stratum | R | Equipm | ent Installed | | ŀ | G S | 4 | Pen./
Rec. | Depth
(Ft.) | Blows/ | Field
Test Data | Descriptio | n & Classification | | Description | M
K
S | | | | | | S-7 | 24/12 | 30-32 | 16-30 | ND | Very dense, red-brownedium SAND, son | vn, fine (+) to | | 30 | 3. | 1 | • | | | | | <u> </u> | | 95-105 | | fine to medium Gra | rel | | | Ì | | NO | | | | | | | | |] | | | | | EC IN | UIPMENT
STALLED | | | | | <u> </u> | | <u> </u> | | | | | | | | | | 35 | | | | | | | ļ | | | | | ļ | • | | | | S-8 | 15/12 | 35-36,3 | 44-83 | ND | Very dense, red-brow
medium SAND, som | m, fine to | | | | | | | | | <u> </u> | <u> </u> | | 100/3 | | (+) fine Gravel | () | 10 | | | | | | | | | | | | [| | | | | S-9 | 12/11 | 40-41 | 52-90 | ND | Very dense, red-brow
medium SAND, little | | | | | | | | | | | | | | | Gravel, little Silt, tra
coarse Sand, one fra | | | | | | | | | | | | | | | decomposed Rock | | | GLACIAL | . 4. | | | | | | | | | | | | | | TILL | | | | | 15 | | S-10 | 17/10 | 45-46.4 | 41-60 | ND | \$7 | . = | | | | | | | | | 2-16 | 17/10 | 4,044 | 100/5* | אט | Very dense, red-brow
medium SAND, som | e fine to coarse | | | 5. | | | | | | | | | 100/3 | | Gravel (includes frag | | | | O. | | | | | _ | | | | | . <u> </u> | trace coarse Sand | | | | | | | | ł | | | | | | | | | l | | | | | | 아 | \dashv | S-11 | 13/11 | 50-51.1 | 29-82 | ND | Verv dense, red-brow | n fine to | | | | | | | - | | | , | | 100/1 | | medium SAND, some
Gravel, some (*) Silt, | fine to coarse | | | 7. | | | | ŀ | | | | | | | coarse Sand with frag | ments of red- | | | | | | | ŀ | _ | | | | | | of spoon | some in up | 5 | \neg | S-12 | 8/8 | 55-55.7 | 105- | ND | Very dense, red-brown | 1, fine (+) to | | | | | | | 1 | | | | | 100/2" | | coarse SAND, some (
decomposed shale | +) Silt, fragment | | | | | | | - | | | | | | | • | | | | | | | | Ì | \dashv | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 7 | 3. | Very di | fficult au | gering. | | | | | | | | | | | 1 | Э. | rraemo | nioi gre | V Shale in ti | in of socor | 1. | pected boulder(s). | | | | | | | | | 7. | Diffica | it augenr
It augenr | ig, auger ch
ig 51 to 54 (| atter 46 to
fect. | 4/ Icet, sus | ected boulder(s). | | | | | | | | | | | | | | | • | |
| | | | | | a t | ific | ation | lines i | epresent | арогохія | mate bound | aries between soil | types, transitio | ons may | be gradual. | Wate | r level | | | | 1143 | HOYE L | <i>J</i> CC11 11101 | JE AL LINK | 2 S 3 (1) 1 (| MORE COMMI | tions stated. flu
nts were made. | ctuations of grou | undwater | may occur | due to | other
Boring No | o. GZ-7 | | | | | | | | | | | | | | CAPIDA U | | | 27
Ve | Nack
mon. | Road | ENVIR | | NTAL, I
Ænvironm | NC.
Iental Scient | ists | PROPOSI
MIDDLETO | ED COURTI
WN. CONN | HOUSE
ECTICUT | F | Bonng No. Page Tile No. Chkd. By: | G2
3 of 3
40800
RM1 | |-------------|--------------|-------|---------------|----------------|---------------------|----------------------|--|---------------------|-----------------------|-------------------------|------------|-----------------------------------|------------------------------| | Bor | ing C | o | GZA | GEOENV | IRONME | NTAL. INC | . <u>Casing</u> | Sampler | | Groun | idwaier Re | · | KMI | | For | cman | | AL A | UGUSTIN | Æ | T | rpe HSA | S.S. | Date | Time | Depth | Casing | Stab. Time | | gΖ | A
Gauss | onmen | tal | | | | D./O.D. 4-1/4* | 2* O.D. | 12/9 | 11:00 | 18.8' | 20' | 5 Minutes | | Rep | | | W MIL" | /HITE | | На | ammer Wt. | 140 LB. | | | | | 3 Millutes | | Date | e Star | · | 12/9/ | 91 End | 12/1 | 0/91 Ha | ammer Fall | 30" | | | <u>-</u> . | | | | | HOU | | SEE P | | | | her | | | | | | | | | Elev. | ſ | ···· | | ity of Mide | dletown | | | | | | | <u> </u> | | P
r | C B
S L | | | mple Info | | | Sam | • | | Stratum | R | Equipment | Installed | | r | G S | No. | Pen./
Rec. | Depth
(Ft.) | Blows/ | Field
Test Data | Description & (| Classification | D | escription | M - | | | | | | S-13 | 4/4 | 60-60.3 | 200/4* | ND | Very dense, red-brown, fir | ne to | | | - S . | | | | | | | | | | | medium SAND, some (-) fine to coarse Gravel, fra decomposed shale | Silt, little | | | | EQUI | NO
PMENT
ALLED | | 35 | | S-14 | 3/2 | 65-65.2 | 200/3* | VID | 1 | | | | | | | | | | | 3,2 | w.z. | 20073 | .ND | Very dense, red-brown, fin
medium SAND, some (-)
fine to coarse Gravei, frag
decomposed shale | Silt little | | | 8.
9. | | | | <u></u> | | | | | | | | | | GLACIAL
TILL | | | | | ٥ | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | 5 | 1 | - | | | | | | | | | | | - | | F | | 1 | | | | | | | | | | | | | | + | | | | | | | | | | | | _ | · · | | | | | | | | | L | S | 15 | 2/2 | 85-85.2 | 256/2* | ND | Very dense, red-brown SAN fragments, some (+) fine Sar (+) Silt | DSTONE
nd. some | 85.
EXP | 2'
IND OF
LORATIC | | | - | | | | 1 | | | | | | | | | | | | | | | | L_ | | | | with CME 55.
e less difficult zones. | | | | | | | Boring No. GZ·7 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | d d | 16. 34. 14. 5 | | |--|--|-----|--|--| | SON SUMMING LEG PART PAR | 6 4 5. 4 5. 5117 and 100 great 1. 600 and 100 great 1. 600 and 100 | | COMMECTICAL EST BORINGS, INC. Sol Sun we look To Bot it Strong toward convection The toward toward Strong toward toward toward The bot it is to be to be toward to | | | 2-21-34
CO344EC | SOURCETICUT TEST BOHINGS, INC. The Second | 5 10 5 mm | ,
,, | 901 Switzing to: |
--|--|---|--|--| | П | | ADVOTA 21164 105 8, 71, 2 | 1 | CONNECTICUT TEST BORINGS, INC. | | 11.2 Cretage | 0 104 | 6+00-0 111110-0-21.8 | POLITICAL DELICATION OF THE PROPERTY PR | TELEVISION CONTROL OF THE PROPERTY PROP | | 1 | | my (m) g. 1 | | ESPECIALE COUPLED ION | | Highest Potery Village o | | 1 2 | | Griener Befinerning Setrates, Inc. | | 4_ | 52.5 | | 6 | | | 2 | 14147,619 | | Ayesulte Poury | Saltion of Cries Fore | | 1 | Sed St. resthered ledge or (1917). | (1413). | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 month (1100 c) 1100 | | | | | 100 E | Ъ | | | hed br. elltatone. | 6: | | 4.2 'tr, all'. | | 3 | - | | (15) 15 17 115 h. Ccap | 5 fed br. f-s ease, 131, c-f | | · • • • • | Sefuest on ES & SS.
Cored free 50' to 40' | 9 9 11 | 1 01 6 93 1912E | | |
अनुन | red br. 431tstone and france | datare. | 47,5,11 | G-110d, tr. silt. | | | | | 12 to 15 | Eed by Ca and, htt/tr. c | | | | ++ | | | | -1-1-1 | ; | | 33'to 55 d to 77 h.Com | Ped bt. a-f and, 11t. c-f e | | | Botton of bottng 55". | | 4 5 5 6 1/1): | Red br. n-f mand, 15t. c.f | | | | | | | | | | | 11.50 35 9 11.11.2 Actor. | Red br. a-f sacd, lit. c-f 62
ssit. | | | | ++ - - | 4 vo 7. 1/4 2 2 2 2 2 1/4 2 2 2 2 2 1/4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 221 Let br. ellty and, ashes. | | - | 74 0 4 - 40 8 6 - Ye 11 4 - 12 84 1 5 1 1 1 1 | | W. 10 1 2 1 Long | 38.1 | | A KASS CONTRACTOR CONT | Control of the contro | 1 1 2 2 2 2 3 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 | 100 | 유취취 | | \$0¢ | SOR SAMMING LOG | | H. E. S. | The state of s | | | | | | | | FO. 60 2 | tocaros Srides 70679, Rt. o | 12.5 | 1 X8° GT | Die 134 Cm | 21 81 01 | 11 18 15 | |--------------------------------
---|----------------------------|---------------------------|--|----------------|---| | | Absorbe Middleton, Ct. | 1 0 1 | 2 2 X | 1 On Or 100.5 | illt, mes | 111, allt, 111. | | CONNECTICUT TEST BORINGS, INC. | P.O. BOX 19
SETUCIAL CONNECTICUT
FRIE MAN NET | Calar Beharts Steers, Inc. | VILLACE OF Cross fore | HE OF THE STATE | | And br. a gry c-f and, 111, allt, 111, [116, c-f grant, 111, arguate antur (wod). | | CONNEC | Ē | a vela | liteor. | | 3 | 9.15 | | | | į, | TT ' | · · · · | | | | Call France Call All | Chouse with 64stratous | 5.18-84 0 hrs | Tre or as Ardredic Roterr | المراب النبات | 11 9 5 85 6171 | 11.6. St. A 13. | Stad Dr. silly c.f and liyared w/red Er. to III if. 20